VITRULUX

Smart Pole for Smart Cities

Smart Cities

future?

We are propelling new ideas, bringing the future closer, integrating the nerve ends of the city organism into its architectural landscape. The service space becomes denser, and at the same time more invisible and human-friendly.

Welcome The Smart Pole!

Every modern city dweller is surrounded by multiple services that have become common as air. As the new technologies are getting more accessible and affordable, they bring the necessary infrastructure to our streets, back yards, and parks. What will it be like? What changes are coming to our yards, our cities, and our planet in the near

The city that's bright

The care for the environmental policy with reduction of pollution and carbon footprint requires the lighting systems to become intellectual, technologically advanced, and energy efficient.

The city with the established

modern digital infrastructure, designed to meet the existing and future requirements, succinctly fit into the city's architectural shape, operating for the city growth and people's benefit.

The city where it's comfortable to

- move freely; - communicate and socialize;
- feel safe about your life and health;
- enjoy the atmosphere and the aesthetics

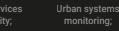
Vitrulux Smart Pole Technology is the synthesis of ergonomics and modern engineering, with design modularity, flexibility, and variety of technological solutions kept in an elegant form.

of the ambience.

Smart City Construction Principles:

- Building a multilevel infrastructure with room for growth and modernization;

- Layered design with implementation of BIM technology.


- Unification and scalability;

- Unified design concept;

Law & security

Emergency services call availability:

Video surveillance

enforcement

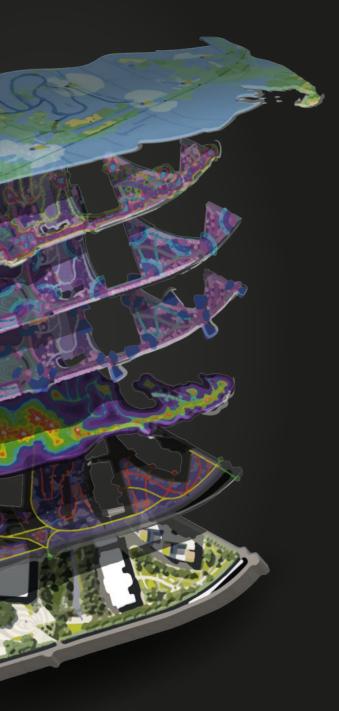
Wireless

& alarm system;

Energy efficiency

& manageability


& analytics: monitoring



Radio planning of WiFi Audio and notification systems planning Video Surveillance +System of informing and navigation Lighting Cable network Master- plan	Radio planning of the mobile networks 2G-50				
planning of WiFi Audio and notification systems planning Video Surveillance +System of informing and navigation Lighting Cable network Master-]		•••••	••••
notification systems planning Video Surveillance +System of informing and navigation Lighting Cable network Master-		i		2	
+System of informing and navigation Lighting Cable network Master-	notification 두	ng	K		
Cable network Master-	+System of info		g		
network Master-	Lighting				````
network Master-	Cabla				
					· · · · · · · · · · · · · · · · · · ·
					••••

Layered design with implementation of BIM technology allows to avoid intersection and duplication of engineering systems, correct calculation of capacity and bearing capabilities, and plan enough room for development, which is particularly relevant in situations with extensive excavation work and further landscaping of the territory.

2nd Principle

building a multilevel infrastructure with room for growth and modernization.

Unification of typical elements, hardware units, and infrastructural requirements, cluster construction principal utilizing Smart Poles as data control and processing centers allows to scale, alter, and add systems with no risk of overloading and loss of control.

3nd Principle

unification and scalability while building multi-level infrastructure.

- dense road traffic flows; - plazas, large intersections;

Low Smart Poles density; High load per pole; Large data flow; Bright lighting requirement;

Pole height: up to 15 meters **Number of modules:** starting at 8

Secondary streets

High volume of pedestrian traffic;
Abundance of intersections;

High concentration of services; High Smart Pole density; High dynamics of data flow;

Pole height: 8-9 meters Number of modules: 4-6

Yards and Parks

- small territories;

- now traffic density;

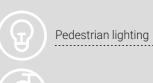
Distributed lighting systems; Low quantity and density of services; Mostly static field;

Pole height: up to 6 meters Number of modules: 2-4

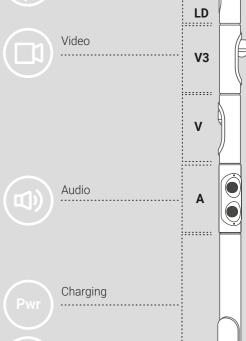
W

R

LS

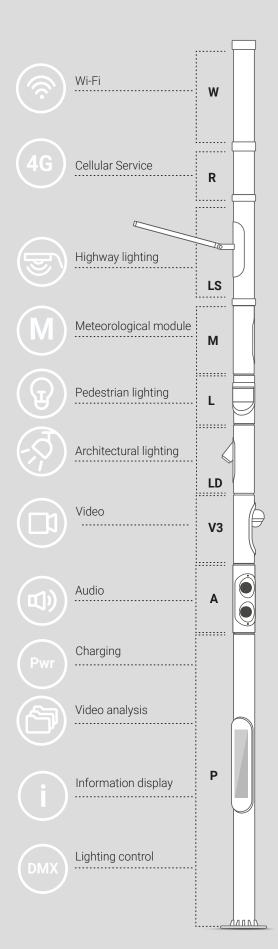

Μ

L

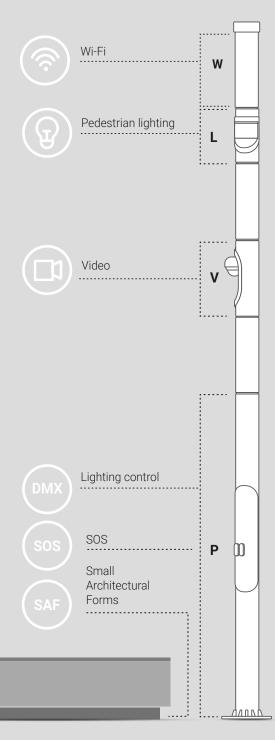

Ρ

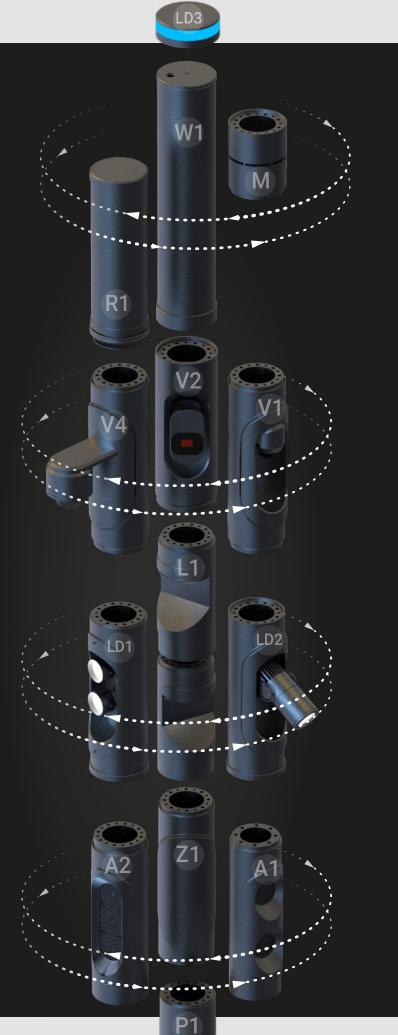
Major Highways Wi-Fi Cellular Service Highway lighting

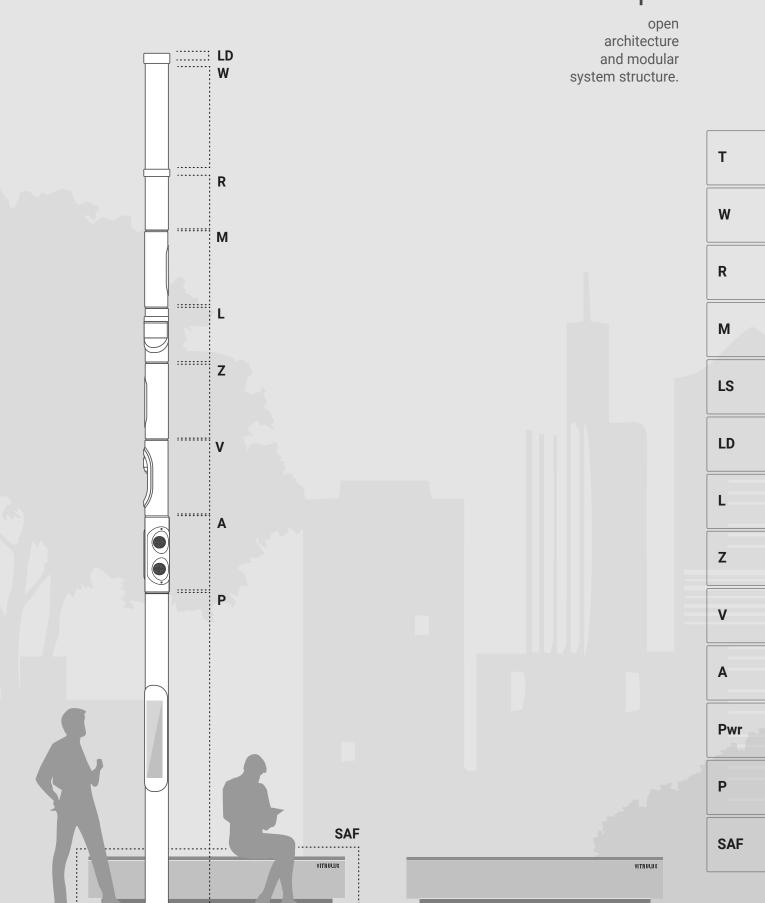
Architectural lighting


Video analysis

Lighting control


Secondary Streets

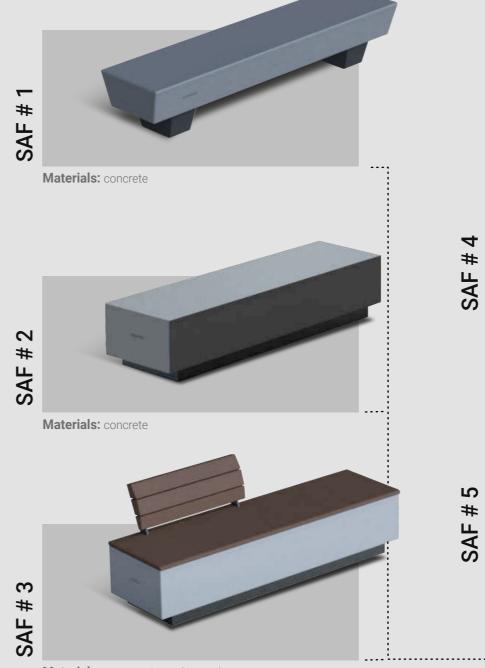




1	-

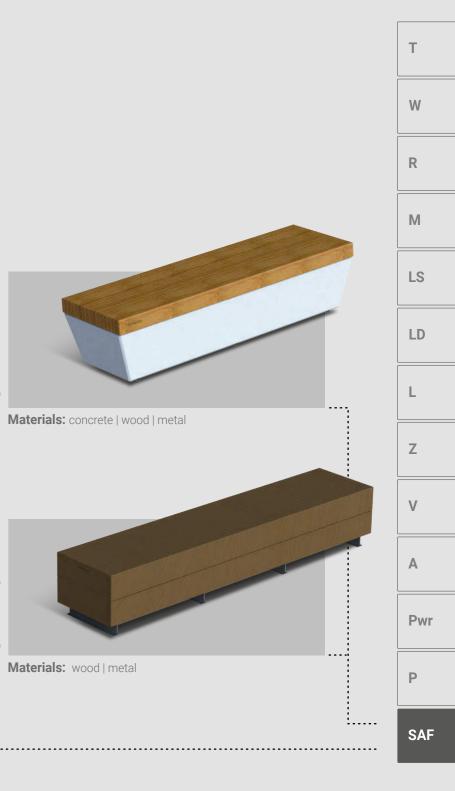
Yards and Parks

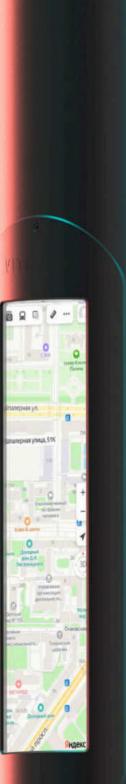
Modular structure principle provides the Smart Pole system with unique flexibility of functionality choice. The possibility of equipment integration from practically any manufacturer allows users to utilize the equipment they are familiar with.

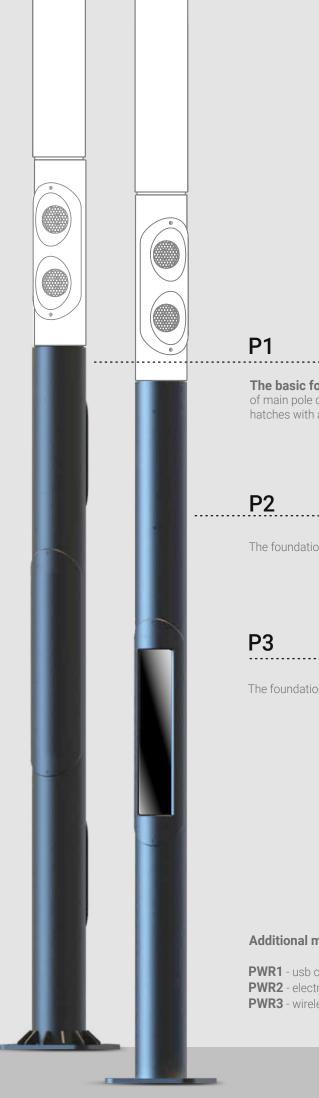

The majority of functional modules have unified placement constructions, which allows interchanging and increasing functionality as needed.

Module parts can be rotated to a desired angle without disassembling the pole.

4th Principle


Small Architectural Forms (SAF) are used for cellular service base station placement in situations when pole integration is impossible.


Materials: concrete | wood | metal



SAF design is individually matched with the object. Usually, they are shaped as a bench, flower-bed, or information board.

The foundation module

Dundation , is used for cable line insertion and placement communication equipment. It has three lockable service an option of opening monitoring.	
on with the call SOS/info panel .	
on equipped with the information display .	
	-
nodules, custom installation:	

PWR1 - usb charger module;

PWR2 - electric car charger module with Type2 outlet; **PWR3** - wireless cell phone/tablet charger module.

R Μ LS LD L Ζ V Α Pwr SAF

. . .

T

W

Acoustic system modules

oixe

TALLET A

111111

111

ower 35watt	
	٠.

rated power 80watt

ers	Coaxial speakers with 120W peak output
	65
ncy, Hz	90-22000
ance, Ohm	4
vity, dB	90
er head	Titanium dome

Т
W
R
Μ
LS
LD
L
Z
V
A
Pwr
Р
SAF

Video Surveillance module

Public areas monitoring

l dome camera	
e sensor, CMOS	1/2,8"
ive pixels, Mpix	3,2
s distance, mm	2.8-12
	-50 +50°C

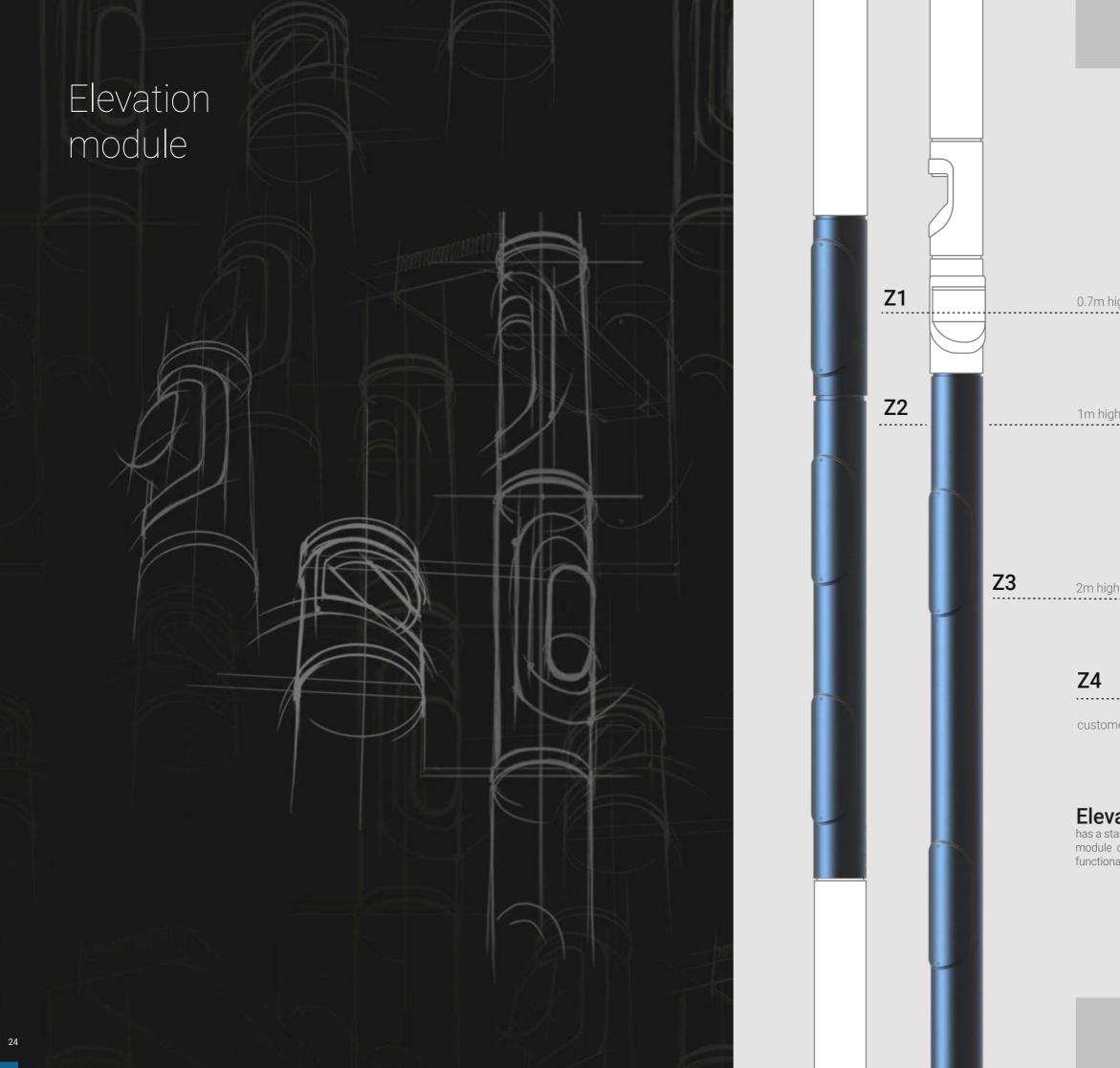
High resolution ready for analytics

e sensor, CMOS	1/2,8"
ive pixels, Mpix	5
distance, mm	2.8-12
	-50+50°C

High speed PTZ dome camera with 180° visible sector

e sensor, CMOS	1/2,8"
ive pixels, Mpix	2-5
distance, mm	4.7-141
	-50+50°C

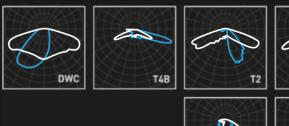
External hanged PTZ camera


Typical parameters are shown above.

Various camera types can be integrated according to the Customer's technical task.

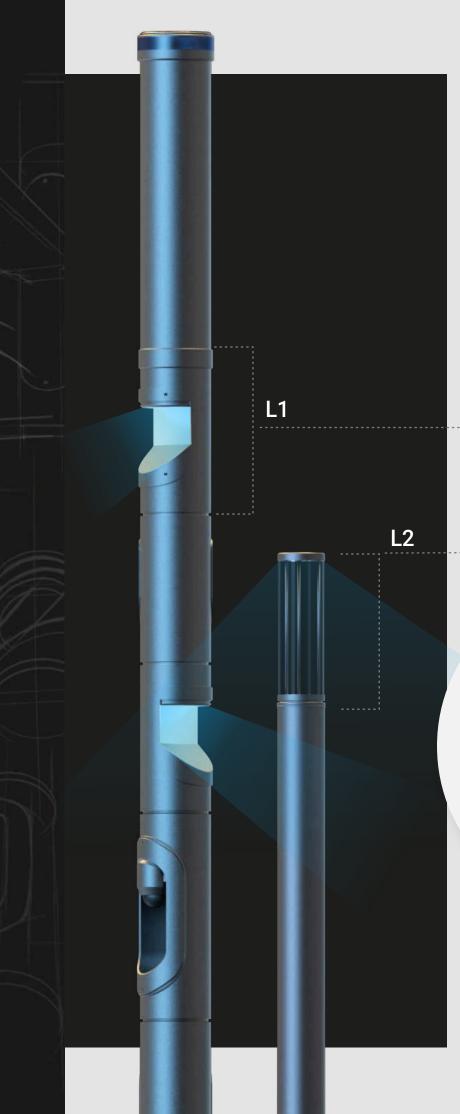
÷...

.----

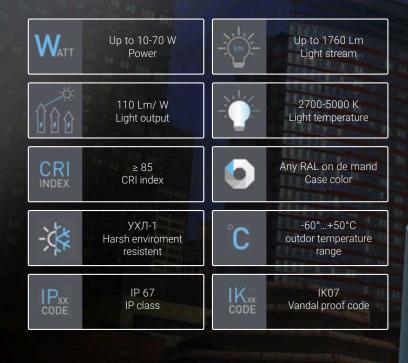


high	Т
	W
gh	R
5	Μ
	LS
	LD
gh	L
	z
mer specified	V
	Α
vetien meedule	

Elevation module has a standard interface for a functional module covered by a hatch for future functionality development.


Functional lighting module

Light beam diagrams


WATT	40-80 W Power	,	4600-9600 Lm Light stream
	120 Lm/ W Light output		2700-5000 K Light temperature
	≥ 85 CRI index	٥	Any RAL on de mand Case color
¥.	УХЛ-1 Harsh enviroment resistent	C	-60°+50°C outdor temperature range
	IP 67 IP class		IK07 Vandal proof code

Decorative lighting modules

ノ

LD3

is a decorative element for pole roof marking.

LD2

LD1

is accent lighting / goboproector.

is used for trees and architecture backlight.

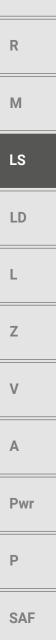
.....

Т
W
R
Μ
LS
LD
L
Z
V
Α
Pwr
Р
SAF

.

Street lighting modules

Light beam diagrams



management

WATT	100-225 W Power		12000-24000 Lm Light stream
	120 Lm/ W Light output		2700-5000 K Light temperature
	≥ 85 CRI index	٥	Any RAL on de mand Case color
*	УХЛ-1 Harsh enviroment resistent	C	-60°+50°C outdor temperature range
	IP 67 IP class		IK07 Vandal proof code

_ 3%_

LS1		
100 W		
LS2		
150 W		
LS3		т
200 W		V
		R
		N
		L
		L
Lighting modules LS		L
are designed for roads, highways, and parki	ng areas. 🕒	Z
Tilt angle: 5° / 10° / 15°		V
Ø 219		A
	5°-10°-75°	P
U	4	P

31

Meteo module with CO_2 sensor

4. > 2500 Hazardous level

CO2 level measurement is the common method to gauge the air quality Basic CO2 levels, ppm:

- 1. <400 healthy, normal outside level
- 2. 500-750 acceptable with some complaints possible
- 3. 1000-2000 General drowsiness

W

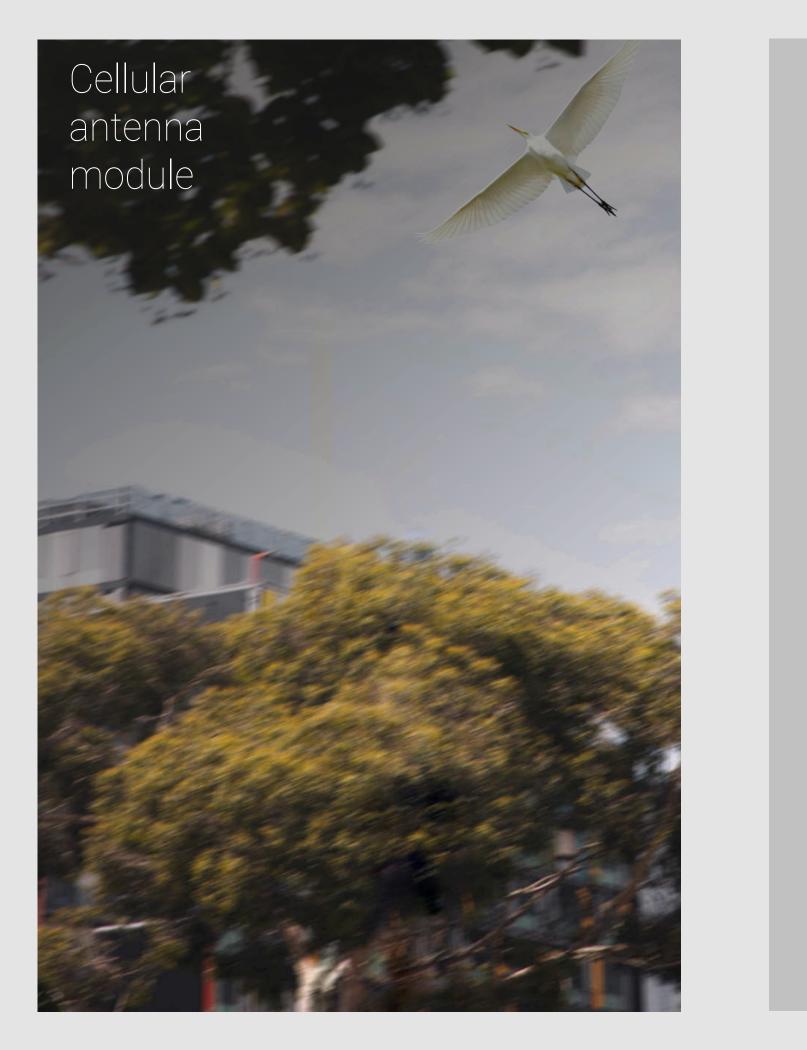
R

Μ

LS

LD

Ζ


V

Α

Pwr

Ρ

SAF

R1 passi	ve
IT allows to opera	s inbuilt to the pole un ite 3G/4G/5G signals v ed into the pole or SAF
Type 1 3-sector 1710-2690 MHz 3x65° X-pol 13.5 dB gain 2x2 MIMO	Type 2 Quasi-omni 1710-2690 MH 360° X-pol 6 dB gain 2x2 MIMO
R2 active)
	nna module integrat e - Huawei AAU5940
R3 active	
Customer speci	fied design.

nder radio transparent coverage. within 1.7-2.7GHz band from radio

.....

Type 3 Single panel 1710-2690 **MHz** 65° **X-pol** 10.5 **dB gain** 2x2 **MIMO**

ed into the pole.

Т
W
R
М
LS
LD
L
Z
V
Α
Pwr
Р
SAF

Wi-Fi module

in nin

W1 up to 256 users 802.11a/b/n/ac up to 1.75 Gbit/s throughput

W2 up to 512 users 802.11a/b/n/ac, ac _Wave2 up to 3.46 Gbit/s throughput

W3 (Wi-Fi 6)

up to 600 users 802.11a/b/g/n/ac/ac wave 2 /ax MIMO up to 8x8

up to 10.3 Gbit/s throughput

We create worlds of light

