
TechnicalWhitepaper
Totogi Charging-as-a-Service on AWS

Version 1.0
May 26, 2023



Totogi Charging-as-a-service on AWS

Table of Contents
1. Introduction 3
2. Integrating Totogi Charging-as-a-Service 4
3. Lifecycle of a Charging Request 7

4. Evaluating Charging Data Requests 8

5. Configuring Rate Plans 13

6. The Optimal Database for Charging 14

7. Privacy: Data Isolation & Multi-Tenancy 16

8. Resiliency 20

9. Security 21

10. Latency 24

11. Conclusion 27
12. Appendix 29

2



Totogi Charging-as-a-service on AWS

1. Introduction
Communications service providers (CSPs) deploy standardized network components
to deliver voice, data and messaging services to their subscribers. A network function
called Online Charging System (OCS) for 4G and Converged Charging System (CCS)
for 5G is responsible for metering, rating and charging of network services and
maintaining records of service usage for each subscriber. It provides signals to other
network functions like the Session Management Function (SMF) to prevent
subscribers from consuming services without authorization or exceeding the limits of
contracted quota. The usage data that is metered in the charging system is used to
deduct balance in real-time and generate reliable usage records for the CSP. The
usage records are important inputs for generating invoices and providing marketing
intelligence to help CSPs optimize their revenue streams.

Totogi Charging-as-a-Service implements the 3GPP standard interfaces for OCS
and CCS and enables CSPs to incorporate the service into their core network without
installing or managing servers, software or databases on their own. Totogi is a
modern, multi-tenant SaaS charging function that provides the flexibility CSPs need
to launch new digital brands, empower new MVNOs and replace legacy charging
systems they have outgrown or are too costly to operate and maintain.

Charging systems are the heart of a CSPs network and are carefully selected to
meter and monetize their core assets. Existing CSPs will be reluctant to perform a
heart transplant without careful consideration of the outsized benefits of shifting to
something new. Both new and established CSPs need to vet the technology and
understand any risks associated with adopting the world's first multi-tenant SaaS
charging system. In this paper, we deep dive into Totogi’s technical architecture,
explain how it is securely incorporated into the CSPs core network and articulate
important technical decisions that uniquely position Totogi Charging-as-a-Service.

3



Totogi Charging-as-a-service on AWS

2. Integrating Totogi Charging-as-a-Service

Southbound Interfaces
Totogi Charging-as-a-Service implements the standard 3GPP OCS and CCS defined
in Release 16/17 interfaces that Network Functions like the IMS, SMSC, P-GW and SMF
use to verify that subscribers are authorized to consume their services and to
subsequently record the units of service consumed during a session. The units are
service dependent, and can reflect time (voice minutes) events (text messages) or
content based charging of data services (WhatsApp megabytes vs general
megabytes). 4G LTE networks use the Diameter protocol to exchange messages with
the OCS and 5G networks use JSON messages over HTTP/2. By implementing the
3GPP standards, Totogi is interoperable with core network functions that implement
these same protocols. These 3GPP interfaces to the core network functions are
referred to as “southbound” interfaces.

While 3GPP defines the standard, there are aspects of the protocol like vendor
defined attribute-value pairs (AVPs) that are open to interpretation and extension.
Totogi has built-in configurable field mapping which eliminates the need for
middleware and directly adapts the 4G and 5G interfaces to the OCS clients in each
operator’s core network.

4



Totogi Charging-as-a-service on AWS

Figure 1: Functional Architecture

Northbound Interfaces
Totogi’s “northbound” Account Management API enables BSS and OSS systems to
accomplish tasks like:

● Create plans dynamically;
● Override existing plans;
● Query balances;
● Obtain usage details;
● Provision subscribers;
● Maintain the state of subscriber;
● Establish or topup balances; and

5



Totogi Charging-as-a-service on AWS

● Assign rate plans to subscribers.

The northbound Account Management API is provided as a suite of GraphQL queries
and mutations, which is not only compatible with most software development
languages and toolkits, but also more developer friendly because it enables them to
request the specific data they require for their use case. Using the APIs, CSPs
implement interfaces with CRM systems, order management systems and various
subscriber channels such as self-service ecommerce and in-store POS systems.

EDR Interface
In addition to maintaining accurate real-time balances for each service that a
subscriber is entitled to, the charging system also generates Event Detail Records
(EDRs) which provide an audit trail accounting of each subscriber's consumption of
network services. While these EDRs are available by API at an account or device level,
they are also delivered as files in an open binary format (ORC) for efficient
processing. The files are partitioned by date and by event type:

● Charging EDRs are produced for any event received by the charging engine,
e.g. CCR Init, CCR Update (4G).

● Billing EDRs are produced at the end of a session (CCR Terminate) deducting
the balance and totalling the units used in the session from init to terminate.

● Audit EDRs are produced when changes affect the subscriber profile, such as
when an account is subscribed to a plan or when a low balance warning is
published to a subscriber.

Each Totogi customer configures the Amazon S3 bucket to receive their EDR files in.
EDRs are buffered and streamed into files every 15 minutes - or more frequently with
higher volumes. Customers can configure S3 events to trigger processing as files are
created, enabling streaming of records into Kafka or ingesting them into data
processing pipelines.

Notifications Interface
The charging system generates notifications that are often of interest to CRM,
self-care systems and end-subscribers. Notifications are generated for events

6

https://orc.apache.org/


Totogi Charging-as-a-service on AWS

including but not limited to low balance warnings and plan expiry warnings. Each
Totogi customer configures the Amazon EventBridge Event Bus to receive
notifications on. Customers then configure event bus rules to trigger different
behaviors in response to event types and other event characteristics.

3.Lifecycle of a Charging Request
3GPP defines a set of standard message passing interfaces for wireless networks and
a subset of those interfaces relate to charging. The call flows vary slightly by release
(4G vs 5G) and by interface (Ro, Gy, N40, etc) but it is useful to understand the
general pattern by reviewing the 5G call flow. For the nitty gritty, see 3GPP spec TS
32.255.

Figure 2: Charging Requests

➔ First, the subscriber uses a network function. Those functions could include
◆ Sending an SMS message
◆ Receiving an SMS message
◆ Initiating a voice call
◆ Uploading or downloading internet data

➔ The NF classifies usage into a rating group (RG).
◆ A rating group is an integer that represents a category of network

usage.
◆ Similar to how an accounting system has a chart of accounts, the

charging network has a hierarchy of rating groups.
● 100 could represent voice and 110 could represent “HD” voice.
● 300 could represent data and 310 could represent “WhatsApp

Data”.

7

https://www.etsi.org/deliver/etsi_ts/132200_132299/132255/15.02.00_60/ts_132255v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/132200_132299/132255/15.02.00_60/ts_132255v150200p.pdf
https://lucid.app/lucidchart/efd70e61-2023-4405-9c52-73140c027992/edit?beaconFlowId=CF01026EB96E22FA&invitationId=inv_c4334264-0109-4120-96ea-4126cb169b61&page=0_0


Totogi Charging-as-a-service on AWS

➔ The NF sends a Charging Data Request [Initial]message to the CHF. This
message includes, among other things
◆ Subscriber identifier (e.g. Device ID)
◆ Rating Group
◆ Subscriber location
◆ Number and type of units requested
◆ Number and type of units used

➔ The CHF evaluates the request and determines how much quota to grant. It
replies with a Charging Data Responsemessage back to the NF. This
message includes:
◆ Amount of quota granted (granted units)
◆ Amount of time the quota grant is valid for (quota validity time or QVT)

➔ Based on the response, the NF can compute when it needs to go back to the
CHF to reauthorize the session and request more quota. It will do this when
◆ The quota validity time expires
◆ The UE consumes quota units granted

➔ When the NF determines it needs more quota or that the QVT has expired, it
sends a Charging Data Request [Update]message to the CHF similar in
structure to the Initial request. It repeats this process throughout the
subscriber’s session.

➔ When the session completes, the NF sends the CHF a Charging Data Request

[Terminate]message which informs the CHF to close out the session, release
reserved balances and update the ending balance to reflect the units used.
The [Terminate]message structure is similar to the [Update].

4. Evaluating Charging Data Requests
Now that we all understand the purpose of a charging system and how it fits into the
landscape of a communication service provider’s enterprise architecture, we can
deep dive into how Totogi utilizes the power of AWS to satisfy real-time requests for
quota servicing billions of devices mapped to thousands of unique rate plans from
hundreds of CSPs across the globe.

8



Totogi Charging-as-a-service on AWS

In this section, we’ll peel back the onion and explore how the Charging System
handles those Charging Data Requestmessages.

Data Structures
Totogi utilizes several data stores in the charging system:

(a) Neptune is the plan database. Its schemaless graph architecture provides
the flexibility to model rate plans as a directed acyclic graph of rules, each
attached to a collection of configuration parameters.

(b) DynamoDB is the runtimeworkhorse. Its key/value, serverless architecture
enables it to respond to requests consistently under 5ms, regardless of the
number of objects stored or concurrent requests in-flight.

(c) S3 provides long-term storage of EDRs in ORC format. EDRs are generated in
large quantities - at least one per network charging request - and need to be
retained for months or years. S3 enables access through Athena, Redshift
Spectrum, or the customer’s choice of BI or other software. S3’s retention,
immutability and access policies can also be used to enforce regulatory
compliance.

Logically, the data is organized into this structure:

9

https://cwiki.apache.org/confluence/display/hive/languagemanual+orc


Totogi Charging-as-a-service on AWS

Figure 3: Data Structures

Accounts

Accounts reflect subscribers in Totogi. They all carry a monetary balance which is
debited when subscribing to plans. When subscribed to a plan, balances are created
for each plan service.

Accounts may be organized hierarchically to support shared plans for enterprise,
family and other use cases.

Devices

Subscribers access the CSPs network using a device and the ID of the device is
presented with each credit control request. Devices provide a link from the network
to the account, providing access to the balances and rating rules to apply to each
request. Devices also link to session data, as there are things like quota reservations
to persist temporarily as subscribers use the system.

10

https://lucid.app/documents/edit/9e1e124e-f27a-408f-bfd0-d73e208c20a5/0?callback=close&name=docs&callback_type=back&v=652&s=612


Totogi Charging-as-a-service on AWS

Plans

Plans encapsulate a set of business rules that determine how a subscriber is
charged for services. The rule sets are versioned so the entity linked to an account is
a Plan Version. Plans have a set of services, with examples including off net voice,
on-net text, generic data and WhatsApp data.

Extensibility

Most nodes in the database include a “Custom Data” attribute that enables
customers and plugins to augment the stock data structures with additional
properties.

SaaS Architecture
Totogi makes use of a small but powerful collection of services largely exclusive to
AWS to deliver a revolutionary charging system that scales automatically as Totogi
adds customers and customers add subscribers. The architecture is resilient, with all
components distributed across availability zones and fully managed by the
hyperscaler to ensure security, durability and performance (more on those topics
later in the paper).

There are four layers to Totogi’s architecture:
● Access Layer is the bridge between a CSPs system and Totogi. Network

functions connect via Diameter or HTTP/2 and BSS/OSS systems connect via
GraphQL Northbound (NB) APIs. All connections are encrypted with TLS and
secured by Cognito.

● Decision Engine is the flexible and scalable compute layer where charging
rules are evaluated and balance and session state transitions are calculated.
Network inputs are supplemented with device, account and plan data from
DynamoDB. EDRs, session and balance updates are transactionally committed
to DynamoDB before responses are returned.

● AWS fullymanaged storage is utilized in a plan database (Neptune) and a
real-time subscriber database (DynamoDB) and is one of the essential
enablers of Totogi’s ability to offer a charging system at a pay-per-use price

11



Totogi Charging-as-a-service on AWS

point that is 50-80% lower than other charging solutions. We’ll dive deeper into
the rationale behind the database choices in The Optimal Database for
Charging section.

● The Client Services layer is where customers link their own S3 data lake and
EventBridge enterprise service bus to Totogi. This seamless handoff enables
clients to configure event handlers and EDR processing simply on their own
cloud stack.

Figure 4: AWS Service Architecture

Charging Request Handling
An auto scaling group of EC2 instances run Totogi’s proprietary decision engine
software. Totogi decided not to use EKS (docker containers) because EC2 is simpler
to manage and as a SaaS operator, simplicity is preferred to portability. An
Application Load Balancer provides the endpoint that clients connect to and

12

https://lucid.app/documents/edit/50660297-7c50-4a50-920a-6c9b5f2f9a56/3?callback=close&name=docs&callback_type=back&v=4255&s=612


Totogi Charging-as-a-service on AWS

distributes requests across engines in the group. Requests must be accompanied
by a valid JWT token that contains the tenant ID as one of the claims.

Given the tenant ID in the JWT token and the subscriberIdentifier (device ID) in
the message body, the engine can retrieve the Account and Session records from
DynamoDB, including the current balance(s) and associated charging rules.

After service requests are rated given the plan configurations, the engine
transactionally persists balance updates, session updates and EDRs to DynamoDB.

Credit Control Request Handling - Diameter
A different auto scaling group of adapters handles 4G Diameter requests by
converting them into 5G REST requests and propagating them to the 5G CHF
endpoint. The adapter obtains a JWT on behalf of the client using either the client
side SSL certificate or the originating VPC endpoint ID as the lookup key.

5. Configuring Rate Plans
Totogi has a flexible API for registering rate plans, but its real super power is enabling
non-technical users in marketing roles to create tariffs and rate plans in its technical
catalog without assistance from IT, in a manner of minutes.

The Plan Design UI has been designed with marketers in mind and tested on
marketers to ensure it is simple to use and enables them to craft the types of plans
they need to compete and innovate in their markets. The system performs checks to
ensure that every configuration is intentional and that the plan is compliant with
guidelines the telco establishes.

When rate plans are associated with subscribers, the APIs provide a mechanism for
overriding attributes of the plan. For example, price, period and allowance can be
overridden by parameters defined in the commercial catalog, enabling Totogi plans
to be easily reused in different contexts and supporting environments with
established enterprise product catalogs.

13



Totogi Charging-as-a-service on AWS

Figure 5: Plan Design makes it simple for Marketers to create and deploy plans

6.The Optimal Database for Charging
Why does Totogi select DynamoDB for its core database? Why not choose a
relational database like Aurora instead? You’d still receive all the benefits of a
managed system, and it would be easier to port to other hyperscalers or even run
on-prem. Why choose a database that only works on AWS?

DynamoDB is a key-value database with a track record of success enabling high
throughput transactional applications like Amazon.com, which processes north of
100m transactions per second on “Prime Day” annually. Unlike other key-value stores
which only provide “eventually consistent” guarantees, Totogi utilized DynamoDB in a
mode that provides strongly consistent reads, with writes synchronously recorded in
two availability zones and asynchronously replicated to a third (typically within
milliseconds). Reads and writes complete reliably in 5ms, regardless of the number
of records in the table, which is important for a planet-scale charging system that
needs to satisfy quota requests for billions of devices simultaneously.

14



Totogi Charging-as-a-service on AWS

The key-value pattern is ideally suited to Totogi’s Charging-as-a-Service use case.
The query patterns are well defined and narrow in scope. The prime examples are
accessing session and account records by tenant-id + device-id. The single table
design pattern both reduces the number of database calls required to satisfy each
request and ensures that all data required for a transaction is co-located on the
same partition, improving performance. Internally, DynamoDB is able to provide
consistent response times and manage storage automatically using a logical
partitioning scheme. Using a relational store to achieve similarly consistent behavior
requires extensive tuning and maintenance as well as pre-provisioned capacity.

DynamoDB is provided as a fully managed service. Unlike a relational database,
there is no storage to attach, no partitioning schemes or table spaces to manage
and no OS or DBMS software to patch. Totogi pays for usage and focuses on table
design and domain modeling.  There is some art that accompanies science when
configuring auto-scaling policies for DynamoDB and other services. When you use
them, you need to give the auto-scaling algorithm parameters to work with to
ensure that scaling up and down happens without impact on your end-users.
DynamoDB auto-scaling RCUs, for example, requires a minimum level, maximum
level and utilization target. 

API calls for charging systems typically reflect a cyclical pattern that is a function of
the number of active subscribers. While the demand curve is generally smooth, it can
experience step-wise changes during large migrations onto the platform or as a
result of specific events such as systemmigrations, marketing promotions or
significant localized events and emergencies. As telco operators, you plan for these
traffic bursts by over-provisioning capacity well above high water marks, in-turn
using much more energy than you need 95% of the time. 

With a massively multi-tenant SaaS platform, Totogi is able to configure
auto-scaling policies that have much higher utilization targets than you would be
able to apply for single-tenant solutions because resources are distributed efficiently
among tenants. With a diversified portfolio of operators using Totogi's service, the
likelihood that there is a "spike" occurring somewhere at any given time is high, so
traffic spikes are simply business-as-usual and the usage curve appears much
smoother - well-matched for auto-scaling responsiveness.

15

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.Partitions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.Partitions.html


Totogi Charging-as-a-service on AWS

7. Privacy: Data Isolation & Multi-Tenancy

Isolation Strategy
Totogi is implemented using the Pool Isolation Strategy of the AWS Well-Architected
Framework. The product utilizes pooled resources for compute and storage with
separate storage partitions per tenant. Read and write access to a partition is
governed by IAM permissions and Cognito Identities, ensuring that each API and
end-user client can only operate on their own data.

Compute Isolation

Context

At a high level, charging requests originate from a network function like a Packet
Gateway, IMS AS (VoLTE) or SMS-C. The request messages carry information that
identifies the authenticated device (e.g MSISDN), type of units used (e.g. data octets,
voice minutes, etc) and the quantity of units used or requested. The charging
function:

1) Looks up configuration data and balances related to the device
2) Computes the impact on balances
3) Computes an accept or reject decision
4) Persists the new balances and event detail records
5) Responds with a message containing the decision

Figure 7: Simplified Charging Message Flow

16

https://docs.aws.amazon.com/wellarchitected/latest/saas-lens/pool-isolation.html


Totogi Charging-as-a-service on AWS

Tenant Authentication

For a 5G core, the network functions interface with the charging function using REST
calls over HTTP/2. On 4G cores, the interfaces use the Diameter protocol over TLS/TCP.
Totogi charger implements the 5G interface natively and includes an adapter that
bidirectionally converts the Diameter protocol charging messages to REST.

On 5G, REST calls are authenticated using OAuth 2.0. Access tokens embedded in
each request incorporate claims that identify the tenant account the network
function belongs to. The tenant account is a component of the key used for each
database read or write.

The Diameter adapter relies on mutual authentication in the TLS protocol. The
adapter securely maps the CN of the client to a 5G identity when translating the
request to the 5G NCHF calls. Client certificates must be signed by a trusted CA.
Requests that fail to meet that criteria are dropped at the TLS layer.

Stateless Compute Layer

All charging requests are load-balanced across an auto-scaling group of charging
engines, responsible for handling charging data requests. There is no state in this
layer. Each request uses inputs in the authentication headers and the request
message to retrieve data required for handling the request from the database.

17



Totogi Charging-as-a-service on AWS

Figure 8: Auto-scaling Compute

Storage Isolation

Totogi Charging-as-a-Service makes use of 3 data stores:

Design Time Configuration Data

Rate plans in Totogi are created and maintained as graphs of objects in Amazon
Neptune, prior to being versioned and published to the runtime configuration data
store in DynamoDB. Totogi incorporates the tenantID into every node ID in the graph
and each graph begins with a root node identified by the tenant ID. Every graph
query or update incorporates the tenant ID, ensuring that each customer’s data is
segregated.

18

https://aws.amazon.com/neptune/
https://aws.amazon.com/neptune/


Totogi Charging-as-a-service on AWS

Runtime Configuration Data

Totogi uses Amazon DynamoDB for its runtime storage layer. DynamoDB is the
Key-Value database originally created for Amazon's retail business. It scales
because records are distributed across partitions identified by each record’s
partition key. To read or write data in DynamoDB, applications must include the
partition key and are only able to operate on a single partition at a time.

Totogi incorporates the tenant ID into the partition key of each record, ensuring that
every data access is scoped to a single tenant. Examples of configuration data
persisted to this runtime store include:

● Balances
● Accounts
● Device→ Account mappings
● Account→ Plan mappings
● Plan charging rules

Event Detail Records

Event Detail Records (EDRs) are initially stored in DynamoDB, using the same
partitioning scheme as runtime configuration data. These records are then
asynchronously streamed out to S3 where they can be downloaded or analyzed.

Files are organized in S3 such that IAM policies independently restrict access to each
tenant’s EDRs.

Mitigating Drawbacks of Pool Isolation

Noisy Neighbor

When resources are shared there is the potential for one tenant to impact the
experience of another. For example, what happens when a CSP that uses Totogi
acquires another CSP and adds 5 million new subscribers in one day? Can the
increased usage affect the performance and stability of other Totogi customers?

19

https://aws.amazon.com/dynamodb/


Totogi Charging-as-a-service on AWS

Totogi’s architecture contains the impacts of one customer’s actions against others:
1. The runtime storage layer partitions are fully dedicated to individual tenants
2. The stateless compute layer dynamically adds capacity as demand increases

8. Resiliency
The OCS/CCS is a critical and core component of an operator’s network and Totogi
has been architected to provide carrier grade resiliency and reliability. Redundancy
and failover are built into each layer of the system.

High Availability
Totogi is deployed on AWS infrastructure in an AWS region. Within the region, Totogi
achieves high availability by deploying services redundantly across two or more
availability zones within a single VPC. Pairs of Diameter interfaces are provided to
operators to enable signaling traffic to flow to the secondary Diameter interface if
the primary is unresponsive.

HTTP/2 interfaces for Nchf are serviced by highly available AWS Application and
Network load balancers, which use round-robin DNS to failover between load
balancer instances and which front end pools of worker nodes spread across AZs.
GraphQL APIs are provided by AppSync, an AWS service that provides resilience
across multiple AZs.

Data is also stored redundantly, with DynamoDB, Neptune and S3 all providing fully
redundant data storage as part of the service.

Geo-Redundancy
Totogi provides a geo-redundancy option that uses AWS service capabilities to
support disaster recovery scenarios where an AWS region becomes unavailable.
DynamoDB Global Tables replicate state to the secondary region and S3’s

20



Totogi Charging-as-a-service on AWS

Cross-Region-Replication feature is enabled to mirror the EDRs. The Decision Engine’s
stateless services run in both regions and DNS updates result in the NFs switching to
the secondary region.

Network Resiliency
Totogi customers ensure that they have resilient network routes to AWS. Those that
use DirectConnect or VPN connections utilize AWS best-practices for HA connections
with those services.

9.Security
Totogi has followed the guidance of the security pillar of the AWS Well-Architected
Framework as a guide for developing its secure Charging System and adhering to
the best practices and AWS services recommendations to achieve security
excellence for the platform.

Data Security
The Charging System reads and writes data on AWS S3, EBS, DynamoDB, Neptune,
and CloudWatch services. All of these services encrypt data at rest leveraging
cryptographic keys stored and managed in the AWS Key Management Service.

Authentication and Access Control
Totogi leverages Amazon Cognito for sign-in and authentication. Users and
machines authenticate with the Cognito service using open standard OAuth2 call
flows and obtain bearer tokens that must be presented to each Totogi API call.
Totogi’s services check the authenticity and validity of the tokens with Cognito and
use the grants encoded in the token to restrict actions to the Totogi account or
tenant the token was issued for, along with the scope of entitlements the user has for
that tenant. Human and machine users are classified into roles like Plan Designer,
Plan Publisher and Network Operator, which are each mapped to a subset of
functions they are able to perform.

21

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://aws.amazon.com/cognito/


Totogi Charging-as-a-service on AWS

Audit
AWS CloudTrail provides a history of AWS API calls, allowing for identification of
source IPs for attempted AWS services access and to verify that only authorized
services and parties are accessing the systems. CloudWatch logs capture data
access and changes. Between CloudTrail and CloudWatch logs, Totogi maintains
comprehensive forensic data that are used in incident management processes.

Connectivity
Totogi provides 2 options for IP connectivity from a CSP’s core network:

1) TLS encrypted public internet links
2) Dedicated private internet addresses enabled by AWS PrivateLink VPC

endpoints in customer VPCs.

All interfaces to the charging system are limited to protocols that provide encryption
in transit. This includes TLS 1.3 for Diameter connections, 5G HTTP/2 connections and
HTTPS GraphQL APIs. Customers that use VPC endpoints route to them using AWS
standard networking services like DirectConnect and VPN.

Figure 9: Accessing Totogi from AWS deployed Core Network

22

https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html
https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html


Totogi Charging-as-a-service on AWS

Figure 10 Accessing Totogi via VPN

For pilot and trial implementations, Totogi has found internet connectivity to be
secure, effective and fast to setup. In addition to internet routing, customers have
two other options for securely routing traffic to Totogi:

AWS Direct Connect

Many Totogi customers already have AWS Direct Connect private leased line
connections to AWS regions where Totogi Charging-as-a-Service runs.

AWS VPN

Customers that do not have Direct Connect may opt to configure site-to-site VPN
connectivity from their local network to their AWS VPC using AWS VPN.

Network Boundaries
Totogi uses Amazon VPC to establish private networks and control access to the
Charging System using subnets, security groups that are stateful and Network
Access Control Lists (NACL) that are stateless. This enables the isolation of Totogi
Charging-as-a-Service from other Totogi applications and customer applications
and network elements, ensuring only specific access is allowed.

23

https://aws.amazon.com/directconnect/
https://aws.amazon.com/vpn/


Totogi Charging-as-a-service on AWS

10. Latency
After security, latency is the biggest concern most operators have when considering
a cloud based charging system - especially if they will be peering it with an
on-premise system. The fact is that no matter how quickly Totogi responds to credit
control requests, unless the core network functions are deployed in the same AWS
region as Totogi, there will be added latency required for network packets to travel to
and from AWS.

Depending on which regional Totogi deployment you are connecting to and where
the core network resides, that added latency can range from 3 milliseconds to 300
milliseconds. While there are often ways to reduce latency by using AWS Direct
Connect or AWS Global Accelerator, light travels at fixed speeds and there are
physical minimum latencies that need to be acknowledged. In this section we
discuss why this added latency is not actually a problem.

Control Plane Latency and the Cloud
The user plane is the path to which data flows between the user’s equipment, the
packet gateway (or SMF) and the public internet. The control plane is the path for
signaling traffic between the packet gateway and the control application (OCS). With
the OCS on the Cloud, the control plane latency is what operators worry about.

A quota request from an on-prem P-GW to an on-prem OCS may have a total Round
Trip Time of < 50ms (C1 + C2 + OCS Processing illustrated below).

24

https://aws.amazon.com/global-accelerator/?blogs-global-accelerator.sort-by=item.additionalFields.createdDate&blogs-global-accelerator.sort-order=desc&aws-global-accelerator-wn.sort-by=item.additionalFields.postDateTime&aws-global-accelerator-wn.sort-order=desc


Totogi Charging-as-a-service on AWS

Figure 11: Control Plane Latency

On the cloud, the absolute minimum latency is based on physical distance and
speed of light in a fiber (approximately 210 million meters per second). Geographical
separation and latency are directly coupled.

Figure 12: Latency vs Distance

25



Totogi Charging-as-a-service on AWS

Control Plane Latency is Not necessarily a Problem
While it is simple to argue that lower latency is always better and that sub-50ms
response times are important because that’s what the legacy on-prem system
provides, it is important to consider the entire picture. Remember, the OCS grants
quota (megabytes) to the P-GW. When the user has consumed most of this quota,
the P-GW requests more from the OCS. The low watermark that triggers the new
request is generally configurable.

If the P-GW does not receive a response before all its remaining quota is used (due
to Control Plane latency), what should it do? Allow service at risk of no quota or deny
service?

Options for managing control plane latency

Option 1: “Good customer experience” - allow usage to continue but the P-GW
keeps count of usage in order to deduct it from the new quota when it finally arrives.
But what if the OCS balance is fully depleted (no more quota can be provided, or at
least less than the amount used while waiting for the response).

It is a Revenue loss - data was used that cannot be paid for. More latency means
more revenue loss, but this only happens when the balance is low on the very final
request-response. The chart below illustrates the extent of the revenue loss and
when considered against the broader business and capability benefits of moving the
OCS to the cloud, the exposure should not bematerial.

26



Totogi Charging-as-a-service on AWS

Figure 13: Latency vs Revenue Exposure

Option 2: “Bad customer experience” - deny usage until the OCS response is
received. Some services like email and web-surfing will be resilient to a small delay
and the user is unlikely to notice. On the contrary, higher value, delay sensitive
services like streaming and other TCP protocols can be highly sensitive to even small
user plane disruption.

How do Totogi customers manage control plane latency?

The best way to manage the latency and minimize revenue loss is to simply
configure the low-water-mark re-authorization level to be higher than the amount of
data that will be consumed during the expected OCS latency period.

11. Conclusion
Totogi Charging-as-a-Service is a 3GPP OCS / CCS that is always-on and available
to incorporate into carriers new or existing networks, providing real-time charging for
pre-paid and post-paid service. As a true, cloud-native SaaS platform, Totogi
Charging-as-a-Service unlocks pricing based on usage - with no hidden charges.
There is no software or infrastructure to install - operators can simply subscribe to
the service in the AWS Marketplace and configure their 4G and/or 5G SA network
functions to use the Totogi charging endpoints. Totogi’s intuitive Plan Design
interface allows non-technical marketing users to configure plans, gain competitive

27

https://aws.amazon.com/marketplace/pp/prodview-hnaq62hzpxane?sr=0-1&ref_=beagle&applicationId=AWSMPContessa


Totogi Charging-as-a-service on AWS

insights and understand commercial margins in just a few clicks. Totogi
Charging-as-a-Service APIs make it simple for developers to implement self-service
and onboarding systems with ease.

By adopting Totogi Charging-as-a-Service, operators can reduce the time to market
for new products and empower digital sub-brands and MVNOs with their own
charging accounts, enabling them to move quickly and reducing the time and
resources required to service them. Operators can safely try out Totogi on test
networks or on small segments of their subscriber base because it is so simple to get
started, while knowing that AWS has completed a Foundational Technical Review of
the software and operational systems.

Are you ready to experiment with Totogi Charging-as-a-Service? You can subscribe
in AWS Marketplace today. Just visit https://aws.amazon.com/marketplace/ and
search for Totogi.

28

https://aws.amazon.com/partners/foundational-technical-review/
https://aws.amazon.com/marketplace/


Totogi Charging-as-a-service on AWS

12. Appendix

Contributors

Contributors to this document include:

• Marc Breslow, Field CTO, Totogi

• Amanveer Singh, Sr. Solutions Architect Telecom, Amazon Web Services

• Visu Sontam, SA Leader, Telecom OSS/BSS, Amazon Web Services

Glossary

BSS - Business Support Systems
CCS - Converged Charging System (5G)
CHF - Charging Function (5G)
CSP - Communications Service Provider
IMS - IP Multimedia System
NF - Network Function
OCS - Online Charging System (4G)
OSS - Operational Support Systems
P-GW - Packet Gateway (4G)
QVT - Quota Validity Time
SMF - Session Management Function (5G)
SMSC - Short Message Service Center
UE - User Equipment

29


